Intrathecal administration of human bone marrow mesenchymal stem cells genetically modified with human proenkephalin gene decrease nociceptive pain in neuropathic rats
نویسندگان
چکیده
Background Mesenchymal stem cell (MSC) has been one of the potential tools in neuropathic pain therapy; however, the augmented efficacy may be expected when they are modified with human proenkephalin (hPPE) gene. In the current study, the antinociceptive effect of human bone marrow stem cells (hBMSCs) engineered with hPPE gene (hPPE-hBMSCs) on sciatic nerve chronic constriction injury (CCI)-induced neuropathic pain in rats was investigated. Methods Primary-cultured hBMSCs were passaged and modified with hPPE, and the cell suspensions (6 × 106) were then intrathecally injected into a rat model of CCI. Paw mechanical withdrawal threshold and paw withdrawal thermal latency were measured before and after CCI surgery. The effects of hPPE gene transfer on hBMSCs bioactivity were analyzed in vitro and in vivo. Results No changes were observed in the surface phenotypes and differentiation of hBMSCs after gene transfer. The hPPE-hBMSC group showed improved paw mechanical withdrawal threshold and paw thermal withdrawal latency values on the ipsilateral side of rats with CCI from day 9 post-surgery, and the analgesic effect was reversed by naloxone. Leucine-enkephalin (L-EK) secretion was augmented in the hPPE-engineered hBMSC group. Conclusions The intrathecal administration of BMSCs modified with hPPE gene can effectively relieve pain caused by chronic constriction injury in rats and might be a potentially therapeutic tool for neuropathic pain in humans.
منابع مشابه
Antinociceptive Effect of Intrathecal Injection of Genetically Engineered Human Bone Marrow Stem Cells Expressing the Human Proenkephalin Gene in a Rat Model of Bone Cancer Pain
Background. This study aimed to investigate the use of human bone marrow mesenchymal stem cells (hBMSCs) genetically engineered with the human proenkephalin (hPPE) gene to treat bone cancer pain (BCP) in a rat model. Methods. Primary cultured hBMSCs were passaged and modified with hPPE, and the cell suspensions (6 × 106) were then intrathecally injected into a rat model of BCP. Paw mechanical w...
متن کاملEx vivo Expansion and Differentiation of Mesenchymal Stem Cells from Goat Bone Marrow
Objective(s) Mesenchymal stem cells (MSCs) from large animals as goat which is genetically more closely related to human have rarely been gained attentions. The present study tried to isolate and characterize MSCs from goat bone marrow. Materials and Methods Fibroblastic cells appeared in goat marrow cell culture were expanded through several subcultures. Passaged-3 cells were then different...
متن کاملBiological behaviors of muscarinic receptors in mesenchymal stem cells derived from human placenta and bone marrow
Objective(s): Cells perform their functional activities by communicating with each other through endogenous substances and receptors. Post-translation, stem cells function properly in new host tissue by carrying specific cell surface receptors. We aimed to characterize muscarinic receptor subtypes in mesenchymal stem cells (MSCs) together with osteogenic and adipogenic...
متن کاملMild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells
Objective(s): Cord blood (CB) is known as a valuable source of hematopoietic stem cells (HSC). Identifying strategies that enhance expansion and maintain engraftment and homing capacity of HSCs can improve transplant efficiency. In this study, we examined different culture conditions on ex vivo expansion and homing capacity of CB-HSCs. Materials and Methods: In this study, 4-5 different units o...
متن کاملExpression of cytochrome P450 and glutathione S-transferase in human bone marrow mesenchymal stem cells
Currently several studies are being carried out on various properties of mesenchymal stem cells (MSCs)however there are a few investigations about drug metabolizing properties of these cells. The aim of thisstudy was to measure the key factors involved in drug metabolism in human bone marrow MSCs. For thispurpose, cellular glutathione (GSH), glutathione Stransferase (GSTs) and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2017